Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Neuron ; 112(8): 1286-1301.e8, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38359825

RESUMO

Tactile discrimination, the ability to differentiate objects' physical properties such as texture, shape, and edges, is essential for environmental exploration, social interaction, and early childhood development. This ability heavily relies on Merkel cell-neurite complexes (MNCs), the tactile end-organs enriched in the fingertips of humans and the whisker hair follicles of non-primate mammals. Although recent studies have advanced our knowledge on mechanical transduction in MNCs, it remains unknown how tactile signals are encoded at MNCs. Here, using rodent whisker hair follicles, we show that tactile signals are encoded at MNCs as fast excitatory synaptic transmission. This synaptic transmission is mediated by acid-sensing ion channels (ASICs) located on the neurites of MNCs, with protons as the principal transmitters. Pharmacological inhibition or genetic deletion of ASICs diminishes the tactile encoding at MNCs and impairs tactile discrimination in animals. Together, ASICs are required for tactile encoding at MNCs to enable tactile discrimination in mammals.


Assuntos
Canais Iônicos Sensíveis a Ácido , Células de Merkel , Pré-Escolar , Humanos , Animais , Células de Merkel/fisiologia , Tato/fisiologia , Transmissão Sináptica , Mamíferos
2.
Sci Adv ; 10(3): eadi5791, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241368

RESUMO

The touch dome (TD) keratinocytes are specialized epidermal cells that intimately associate with the light touch sensing Merkel cells (MCs). The TD keratinocytes function as a niche for the MCs and can induce de novo hair follicles upon stimulation; however, how the TD keratinocytes are maintained during homeostasis remains unclear. scRNA-seq identified a specific TD keratinocyte marker, Tenascin-C (TNC). Lineage tracing of Tnc-expressing TD keratinocytes revealed that these cells maintain themselves as an autonomous epidermal compartment and give rise to MCs upon injury. Molecular characterization uncovered that, while the transcriptional and chromatin landscape of the TD keratinocytes is remarkably similar to that of the interfollicular epidermal keratinocytes, it also shares certain molecular signatures with the hair follicle keratinocytes. Our study highlights that the TD keratinocytes in the adult skin have molecular characteristics of keratinocytes of diverse epidermal lineages.


Assuntos
Queratinócitos , Tenascina , Tenascina/genética , Epiderme , Pele , Células de Merkel/fisiologia , Folículo Piloso
3.
PLoS Comput Biol ; 19(12): e1011720, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38117763

RESUMO

Merkel cells combine with Aß afferents, producing slowly adapting type 1(SA1) responses to mechanical stimuli. However, how Merkel cells transduce mechanical stimuli into neural signals to Aß afferents is still unclear. Here we develop a biophysical model of Merkel cells for mechanical transduction by incorporating main ingredients such as Ca2+ and K+ voltage-gated channels, Piezo2 channels, internal Ca2+ stores, neurotransmitters release, and cell deformation. We first validate our model with several experiments. Then we reveal that Ca2+ and K+ channels on the plasma membrane shape the depolarization of membrane potentials, further regulating the Ca2+ transients in the cells. We also show that Ca2+ channels on the plasma membrane mainly inspire the Ca2+ transients, while internal Ca2+ stores mainly maintain the Ca2+ transients. Moreover, we show that though Piezo2 channels are rapidly adapting mechanical-sensitive channels, they are sufficient to inspire sustained Ca2+ transients in Merkel cells, which further induce the release of neurotransmitters for tens of seconds. Thus our work provides a model that captures the membrane potentials and Ca2+ transients features of Merkel cells and partly explains how Merkel cells transduce the mechanical stimuli by Piezo2 channels.


Assuntos
Cálcio , Células de Merkel , Células de Merkel/fisiologia , Cálcio/metabolismo , Potenciais da Membrana/fisiologia , Neurotransmissores/metabolismo
4.
Neuron ; 111(20): 3211-3229.e9, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37725982

RESUMO

Across mammalian skin, structurally complex and diverse mechanosensory end organs respond to mechanical stimuli and enable our perception of dynamic, light touch. How forces act on morphologically dissimilar mechanosensory end organs of the skin to gate the requisite mechanotransduction channel Piezo2 and excite mechanosensory neurons is not understood. Here, we report high-resolution reconstructions of the hair follicle lanceolate complex, Meissner corpuscle, and Pacinian corpuscle and the subcellular distribution of Piezo2 within them. Across all three end organs, Piezo2 is restricted to the sensory axon membrane, including axon protrusions that extend from the axon body. These protrusions, which are numerous and elaborate extensively within the end organs, tether the axon to resident non-neuronal cells via adherens junctions. These findings support a unified model for dynamic touch in which mechanical stimuli stretch hundreds to thousands of axon protrusions across an end organ, opening proximal, axonal Piezo2 channels and exciting the neuron.


Assuntos
Mecanotransdução Celular , Células de Merkel , Animais , Células de Merkel/fisiologia , Mecanotransdução Celular/fisiologia , Imageamento Tridimensional , Canais Iônicos/metabolismo , Mecanorreceptores/fisiologia , Mamíferos/metabolismo
5.
Exp Dermatol ; 32(10): 1848-1855, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37587642

RESUMO

The mechanotransduction of light-touch sensory stimuli is considered to be the main physiological function of epidermal Merkel cells (MCs). Recently, however, MCs have been demonstrated to be also thermo-sensitive, suggesting that their role in skin physiologically extends well beyond mechanosensation. Here, we demonstrate that in healthy human skin epidermal MCs express functional olfactory receptors, namely OR2AT4, just like neighbouring keratinocytes. Selective stimulation of OR2AT4 by topical application of the synthetic odorant, Sandalore®, significantly increased Piccolo protein expression in MCs, as assessed by quantitative immunohistomorphometry, indicating increased vesicle trafficking and recycling, and significantly reduced nerve growth factor (NGF) immunoreactivity within MCs, possibly indicating increased neurotrophin release upon OR2AT4 activation. Live-cell imaging showed that Sandalore® rapidly induces a loss of FFN206-dependent fluorescence in MCs, suggesting OR2AT4-dependent MC depolarization and subsequent vesicle secretion. Yet, in contrast to keratinocytes, OR2AT4 stimulation by Sandalore® altered neither the number nor the proliferation status of MCs. These preliminary ex vivo findings demonstrate that epidermal MCs also exert OR-dependent chemosensory functions in human skin, and invite one to explore whether these newly identified properties are dysregulated in selected skin disorders, for example, in pruritic dermatoses, and if these novel MC functions can be therapeutically targeted to maintain/promote skin health.


Assuntos
Células de Merkel , Humanos , Butanóis/metabolismo , Epiderme/metabolismo , Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia , Células de Merkel/metabolismo , Células de Merkel/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Pele/metabolismo
7.
Cells ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497085

RESUMO

Merkel cells (MCs) are rare multimodal epidermal sensory cells. Due to their interactions with slowly adapting type 1 (SA1) Aß low-threshold mechanoreceptor (Aß-LTMRs) afferents neurons to form Merkel complexes, they are considered to be part of the main tactile terminal organ involved in the light touch sensation. This function has been explored over time by ex vivo, in vivo, in vitro, and in silico approaches. Ex vivo studies have made it possible to characterize the topography, morphology, and cellular environment of these cells. The interactions of MCs with surrounding cells continue to be studied by ex vivo but also in vitro approaches. Indeed, in vitro models have improved the understanding of communication of MCs with other cells present in the skin at the cellular and molecular levels. As for in vivo methods, the sensory role of MC complexes can be demonstrated by observing physiological or pathological behavior after genetic modification in mouse models. In silico models are emerging and aim to elucidate the sensory coding mechanisms of these complexes. The different methods to study MC complexes presented in this review may allow the investigation of their involvement in other physiological and pathophysiological mechanisms, despite the difficulties in exploring these cells, in particular due to their rarity.


Assuntos
Células de Merkel , Neurônios Aferentes , Camundongos , Animais , Células de Merkel/fisiologia , Mecanorreceptores , Pele
8.
Zhonghua Shao Shang Za Zhi ; 38(9): 887-892, 2022 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-36177597

RESUMO

The reconstruction of tactile function during the repair of skin damage caused by factors including burns is inseparable from the functional regeneration of tactile receptor Merkel cells. Merkel cells mainly exist in the basal layer of the epidermis and are closely connected with nerves to form Merkel cell-nerve complexes, which play an important role in biological organisms. A large number of studies have shown that Merkel cells conduct precise transmission of mechanical force stimuli through the mechanically gated ion channels PIEZO2, and perform the function of tactile receptors. In this paper, we discussed the characteristics of Merkel cells and analyzed the different subgroups that may possibly exist in this type of cells and their functions, at the same time, we investigated the animal model research of touch-related diseases and the clinical diseases related to touch, revealing the importance of Merkel cell function research.


Assuntos
Células de Merkel , Tato , Animais , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Células de Merkel/fisiologia , Pele/metabolismo , Tato/fisiologia
9.
J Neurosci ; 41(26): 5595-5619, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34031166

RESUMO

Innocuous touch sensation is mediated by cutaneous low-threshold mechanoreceptors (LTMRs). Aß slowly adapting type I (SAI) neurons constitute one LTMR subtype that forms synapse-like complexes with associated Merkel cells in the basal skin epidermis. Under healthy conditions, these complexes transduce indentation and pressure stimuli into Aß SAI LTMR action potentials that are transmitted to the CNS, thereby contributing to tactile sensation. However, it remains unknown whether this complex plays a role in the mechanical hypersensitivity caused by peripheral nerve injury. In this study, we characterized the distribution of Merkel cells and associated afferent neurons across four diverse domains of mouse hind paw skin, including a recently described patch of plantar hairy skin. We also showed that in the spared nerve injury (SNI) model of neuropathic pain, Merkel cells are lost from the denervated tibial nerve territory but are relatively preserved in nearby hairy skin innervated by the spared sural nerve. Using a genetic Merkel cell KO mouse model, we subsequently examined the importance of intact Merkel cell-Aß complexes to SNI-associated mechanical hypersensitivity in skin innervated by the spared neurons. We found that, in the absence of Merkel cells, mechanical allodynia was partially reduced in male mice, but not female mice, under sural-sparing SNI conditions. Our results suggest that Merkel cell-Aß afferent complexes partially contribute to mechanical allodynia produced by peripheral nerve injury, and that they do so in a sex-dependent manner.SIGNIFICANCE STATEMENT Merkel discs or Merkel cell-Aß afferent complexes are mechanosensory end organs in mammalian skin. Yet, it remains unknown whether Merkel cells or their associated sensory neurons play a role in the mechanical hypersensitivity caused by peripheral nerve injury. We found that male mice genetically lacking Merkel cell-Aß afferent complexes exhibited a reduction in mechanical allodynia after nerve injury. Interestingly, this behavioral phenotype was not observed in mutant female mice. Our study will facilitate understanding of mechanisms underlying neuropathic pain.


Assuntos
Hiperalgesia/fisiopatologia , Células de Merkel/fisiologia , Neuralgia/fisiopatologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Caracteres Sexuais , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/etiologia , Neurônios Aferentes/fisiologia , Traumatismos dos Nervos Periféricos/complicações , Pele/inervação , Nervo Sural/lesões
10.
J Tissue Eng Regen Med ; 15(6): 586-595, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33837671

RESUMO

Transplantation of embryonic motor neurons has been shown to improve motor neuron survival and innervation of neuromuscular junctions in peripheral nerves. However, there have been no reports regarding transplantation of sensory neurons and innervation of sensory receptors. Therefore, we hypothesized that the transplantation of embryonic sensory neurons may improve sensory neurons in the skin and innervate Merkel cells and Meissner's corpuscles. We obtained sensory neurons from dorsal root ganglia of 14-day rat embryos. We generated a rat model of Wallerian-degeneration by performing sciatic nerve transection and waiting for one week after. Six months after cell transplantation, we performed histological and electrophysiological examinations in naïve control, surgical control, and cell transplantation groups. The number of nerve fibers in the papillary dermis and epidermal-dermal interface was significantly greater in the cell transplantation than in the surgical control group. The percent of Merkel cells with nerve terminals, as well as the average number of Meissner corpuscles with nerve terminals, were higher in the cell transplantation than in the surgical control group, but differences were not significant between the two groups. Moreover, the amplitude and latency of sensory conduction velocity were evoked in rats of the cell transplantation group. We demonstrated that the transplantation of embryonic dorsal root ganglion cells improved sensory nerve fiber number and innervation of Merkel cells and Meissner's corpuscles in peripheral nerves.


Assuntos
Gânglios Espinais/embriologia , Gânglios Espinais/transplante , Mecanorreceptores/fisiologia , Células de Merkel/fisiologia , Nervos Periféricos/patologia , Animais , Derme/inervação , Fenômenos Eletrofisiológicos , Epiderme/inervação , Masculino , Fibras Nervosas/patologia , Condução Nervosa , Neuritos/fisiologia , Propriocepção , Ratos , Ratos Endogâmicos F344 , Nervo Tibial/patologia
11.
J Neurosci ; 41(16): 3622-3634, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33722975

RESUMO

Fast-adapting type 1 (FA-1) and slowly-adapting type 1 (SA-1) first-order tactile neurons provide detailed spatiotemporal tactile information when we touch objects with fingertips. The distal axon of these neuron types branches in the skin and innervates many receptor organs associated with fingerprint ridges (Meissner corpuscles and Merkel cell neurite complexes, respectively), resulting in heterogeneous receptive fields whose sensitivity topography includes many highly sensitive zones or "subfields." In experiments on humans of both sexes, using raised dots that tangentially scanned the receptive field we examined the spatial acuity of the subfields of FA-1 and SA-1 neurons and its constancy across scanning speed and direction. We report that the sensitivity of the subfield arrangement for both neuron types on average corresponds to a spatial period of ∼0.4 mm and provide evidence that a subfield's spatial selectivity arises because its associated receptor organ measures mechanical events limited to a single papillary ridge. Accordingly, the sensitivity topography of a neuron's receptive fields is quite stable over repeated mappings and over scanning speeds representative of real-world hand use. The sensitivity topography is substantially conserved also for different scanning directions, but the subfields can be relatively displaced by direction-dependent shear deformations of the skin surface.SIGNIFICANCE STATEMENT The branching of the distal axon of human first-order tactile neurons with receptor organs associated with fingerprint ridges (Meissner and Merkel end-organs) results in cutaneous receptive fields composed of several distinct subfields spread across multiple ridges. We show that the subfields' spatial selectivity typically corresponds to the dimension of the ridges (∼0.4 mm) and a neuron's subfield layout is well preserved across tangential movement speeds and directions representative of natural use of the fingertips. We submit that the receptor organs underlying subfields essentially measure mechanical events at individual ridges. That neurons receive convergent input from multiple subfields does not preclude the possibility that spatial details can be resolved on the scale of single fingerprint ridges by a population code.


Assuntos
Dedos/inervação , Dedos/fisiologia , Células Receptoras Sensoriais/fisiologia , Percepção Espacial/fisiologia , Tato/fisiologia , Adulto , Feminino , Dedos/anatomia & histologia , Humanos , Masculino , Mecanorreceptores/fisiologia , Células de Merkel/fisiologia , Neuritos/fisiologia , Tempo de Reação/fisiologia , Percepção do Tato , Adulto Jovem
12.
J Neurophysiol ; 124(6): 1824-1831, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33085566

RESUMO

Piezo2 channels are expressed in Merkel cells and somatosensory neurons to mediate mechanotransduction leading to the sense of touch. Components of the cytoskeleton including microtubules are key intracellular structures that maintain cellular membrane mechanics and thereby may be important in mechanotransduction. In the present study, we have explored, with microtubule-targeting agents, the potential role of microtubules in Piezo2-mediated mechanotransduction in Merkel cells of mouse whisker hair follicles. Applying patch-clamp recordings to Merkel cells in situ in whisker hair follicles, we show that Piezo2-mediated mechanically activated (MA) currents in Merkel cells are significantly potentiated by the microtubule stabilizer paclitaxel but reduced by the microtubule destabilizer vincristine. Furthermore, electrophysiological recordings made from whisker hair follicle afferent nerves show that mechanically evoked whisker afferent impulses are significantly enhanced by paclitaxel and its analog docetaxel but significantly suppressed by vincristine and its analog vinblastine. Our findings suggest that microtubules play an essential role in Piezo2 mechanotransduction in Merkel cells.NEW & NOTEWORTHY Piezo2 channels are expressed in Merkel cells to mediate mechanotransduction leading to the sense of touch. Here we determined the role of microtubules in regulating Piezo2-mediated mechanotransduction in Merkel cells. Piezo2-mediated currents in Merkel cells are potentiated by microtubule stabilizer paclitaxel but reduced by microtubule destabilizer vincristine. Mechanically evoked afferent impulses are also enhanced by microtubule stabilizers and suppressed by microtubule destabilizers. Microtubules may play an essential role in Piezo2 mechanotransduction in Merkel cells.


Assuntos
Folículo Piloso/fisiologia , Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Células de Merkel/fisiologia , Microtúbulos/fisiologia , Percepção do Tato/fisiologia , Vibrissas/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp
13.
Mol Pain ; 16: 1744806920938237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32600103

RESUMO

The Merkel disc is a main type of tactile end organs formed by Merkel cells and Aß-afferent endings as first tactile sensory synapses. They are highly abundant in fingertips, touch domes, and whisker hair follicles of mammals and are essential for sensory tasks including social interaction, environmental exploration, and tactile discrimination. We have recently shown that Merkel discs use serotonin to transmit tactile signals from Merkel cells to Aß-afferent endings to drive slowly adapting type 1 impulses on the Aß-afferent nerves. This raises a question as whether the serotoninergic transmission at Merkel discs may be regulated by serotonin transporters and whether serotonin transporter inhibitors may affect the tactile transmission. Here, we made recordings from whisker afferent nerves of mouse whisker hair follicles and tested the effects of monoamine transporter inhibitors on slowly adapting type 1 impulses. We show that methamphetamine, a monoamine releasing facilitator and reuptake inhibitor, elicited spontaneous impulses as well as increased the numbers of slowly adapting type 1 impulses elicited by whisker hair deflections. S-duloxetine, a potent inhibitor of transporters of serotonin and norepinephrine, and fluoxetine, a selective inhibitor of serotonin transporters, both also increased the numbers of slowly adapting type 1 impulses. Prolonged treatment of whisker hair follicles with methamphetamine abolished most of slowly adapting type 1 impulses. Furthermore, the treatment of whisker hair follicles with methamphetamine resulted in serotonin release from whisker hair follicles. Taken together, our results suggest that serotonin transporters play a role in regulating tactile transmission at Merkel discs.


Assuntos
Folículo Piloso/fisiologia , Células de Merkel/fisiologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Tato/fisiologia , Vibrissas/fisiologia , Animais , Cloridrato de Duloxetina/farmacologia , Fluoxetina/farmacologia , Folículo Piloso/efeitos dos fármacos , Células de Merkel/efeitos dos fármacos , Metanfetamina/farmacologia , Camundongos Endogâmicos C57BL , Serotonina/metabolismo , Vibrissas/efeitos dos fármacos
14.
Science ; 368(6497)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32554568

RESUMO

Meissner corpuscles are mechanosensory end organs that densely occupy mammalian glabrous skin. We generated mice that selectively lacked Meissner corpuscles and found them to be deficient in both perceiving the gentlest detectable forces acting on glabrous skin and fine sensorimotor control. We found that Meissner corpuscles are innervated by two mechanoreceptor subtypes that exhibit distinct responses to tactile stimuli. The anatomical receptive fields of these two mechanoreceptor subtypes homotypically tile glabrous skin in a manner that is offset with respect to one another. Electron microscopic analysis of the two Meissner afferents within the corpuscle supports a model in which the extent of lamellar cell wrappings of mechanoreceptor endings determines their force sensitivity thresholds and kinetic properties.


Assuntos
Epiderme/inervação , Células de Merkel/fisiologia , Células de Merkel/ultraestrutura , Percepção do Tato/fisiologia , Tato/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Proteínas Tirosina Quinases/genética , Transdução de Sinais
15.
Exp Dermatol ; 28(12): 1412-1415, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31001848

RESUMO

The mechanosensitive Merkel cell-neurite complex comprising two distinct cell types in both hairy and glabrous skin has been widely recognized as touch receptor for more than 100 years. In 2014, three elegant studies further demonstrated that the Merkel cell-neurite complex mediates touch transduction via the mechanosensitive Piezo2 channel. However, whether it is involved in genesis of itch and pain sensations, has been unclear. Recently, we reported that Merkel cells modulate the development of mechanical itch under the conditions of dry skin and aging, whereas two other studies demonstrated that Piezo2 channel mediates mechanical pain. In this assay, we summarized the current knowledge of Merkel disk under both normal and pathological conditions, with a focus on its role in touch, itch, and pain.


Assuntos
Células de Merkel/fisiologia , Neuritos/fisiologia , Prurido/etiologia , Animais , Humanos , Hiperalgesia/etiologia
16.
Neurosci Lett ; 705: 14-19, 2019 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30936034

RESUMO

Loss of the sense of touch or numbness in fingertips and toes is one of the earliest sensory dysfunctions in patients receiving chemotherapy with anti-cancer drugs such as vincristine. However, mechanisms underlying this chemotherapy-induced sensory dysfunction is poorly understood. Whisker hair follicles are tactile organs in non-primate mammals which are functionally equivalent to human fingertips. Here we used mouse whisker hair follicles as a model system to explore how vincristine treatment induces the loss of the sense of touch. We show that chronic treatment of mice with vincristine impaired in vivo whisker tactile behavioral responses. In vitro electrophysiological recordings made from whisker hair follicle afferent nerves showed that mechanically evoked whisker afferent impulses were significantly reduced following vincristine treatment. Furthermore, patch-clamp recordings from Merkel cells of whisker hair follicles revealed a significant reduction of mechanically activated currents via Piezo2 channels in Merkel cells. Collectively, our results suggest that Piezo2 channel dysfunction in Merkel cells contribute to the loss of the sense of touch following the chemotherapy treatment regimen with vincristine.


Assuntos
Folículo Piloso/efeitos dos fármacos , Canais Iônicos/metabolismo , Células de Merkel/efeitos dos fármacos , Tato/efeitos dos fármacos , Vincristina/efeitos adversos , Animais , Folículo Piloso/fisiologia , Técnicas In Vitro , Células de Merkel/fisiologia , Camundongos , Tato/fisiologia , Vibrissas/fisiologia
17.
PLoS One ; 14(3): e0213325, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30835771

RESUMO

Engineered skin substitutes (ESS), prepared using primary human fibroblasts and keratinocytes with a biopolymer scaffold, were shown to provide stable closure of excised burns, but relatively little is known about innervation of ESS after grafting. This study investigated innervation of ESS and, specifically, whether Merkel cells are present in healed grafts. Merkel cells are specialized neuroendocrine cells required for fine touch sensation in skin. We discovered cells positive for keratin 20 (KRT20), a general marker for Merkel cells, in the basal epidermis of ESS after transplantation to mice, suggesting the presence of Merkel cells. Cells expressing KRT20 were not observed in ESS in vitro. However, widely separated KRT20-positive cells were observed in basal epidermis of ESS by 2 weeks after grafting. By 4 weeks, these cells increased in number and expressed keratins 18 and 19, additional Merkel cells markers. Putative Merkel cell numbers increased further between weeks 6 and 14; their densities varied widely and no specific pattern of organization was observed, similar to Merkel cell localization in human skin. KRT20-positive cells co-expressed epidermal markers E-cadherin and keratin 15, suggesting derivation from the epidermal lineage, and neuroendocrine markers synaptophysin and chromogranin A, consistent with their identification as Merkel cells. By 4 weeks after grafting, some Merkel cells in engineered skin were associated with immature afferents expressing neurofilament-medium. By 8 weeks, Merkel cells were complexed with more mature neurons expressing neurofilament-heavy. Positive staining for human leukocyte antigen demonstrated that the Merkel cells in ESS were derived from grafted human cells. The results identify, for the first time, Merkel cell-neurite complexes in engineered skin in vivo. This suggests that fine touch sensation may be restored in ESS after grafting, although this must be confirmed with future functional studies.


Assuntos
Queratinócitos/citologia , Células de Merkel/citologia , Neurônios/citologia , Transplante de Pele/métodos , Pele Artificial , Engenharia Tecidual/métodos , Cicatrização , Adolescente , Animais , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Queratinócitos/fisiologia , Células de Merkel/fisiologia , Camundongos , Camundongos SCID , Neurônios/fisiologia , Tato/fisiologia
18.
J Math Biol ; 78(7): 2171-2206, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30830268

RESUMO

Evidence suggests that both the interaction of so-called Merkel cells and the epidermal stress distribution play an important role in the formation of fingerprint patterns during pregnancy. To model the formation of fingerprint patterns in a biologically meaningful way these patterns have to become stationary. For the creation of synthetic fingerprints it is also very desirable that rescaling the model parameters leads to rescaled distances between the stationary fingerprint ridges. Based on these observations, as well as the model introduced by Kücken and Champod we propose a new model for the formation of fingerprint patterns during pregnancy. In this anisotropic interaction model the interaction forces not only depend on the distance vector between the cells and the model parameters, but additionally on an underlying tensor field, representing a stress field. This dependence on the tensor field leads to complex, anisotropic patterns. We study the resulting stationary patterns both analytically and numerically. In particular, we show that fingerprint patterns can be modeled as stationary solutions by choosing the underlying tensor field appropriately.


Assuntos
Algoritmos , Simulação por Computador , Dermatoglifia , Células Epidérmicas/citologia , Células de Merkel/citologia , Estresse Fisiológico , Anisotropia , Células Epidérmicas/fisiologia , Feminino , Humanos , Células de Merkel/fisiologia , Gravidez
19.
Elife ; 82019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30794158

RESUMO

Touch sensation is initiated by mechanosensory neurons that innervate distinct skin structures; however, little is known about how these neurons are patterned during mammalian skin development. We explored the cellular basis of touch-receptor patterning in mouse touch domes, which contain mechanosensory Merkel cell-neurite complexes and abut primary hair follicles. At embryonic stage 16.5 (E16.5), touch domes emerge as patches of Merkel cells and keratinocytes clustered with a previously unsuspected population of Bmp4-expressing dermal cells. Epidermal Noggin overexpression at E14.5 disrupted touch-dome formation but not hair-follicle specification, demonstrating a temporally distinct requirement for BMP signaling in placode-derived structures. Surprisingly, two neuronal populations preferentially targeted touch domes during development but only one persisted in mature touch domes. Finally, Keratin-17-expressing keratinocytes but not Merkel cells were necessary to establish innervation patterns during development. These findings identify key cell types and signaling pathways required for targeting Merkel-cell afferents to discrete mechanosensory compartments.


Assuntos
Padronização Corporal , Células de Merkel/fisiologia , Nervos Periféricos/embriologia , Pele/embriologia , Animais , Proteína Morfogenética Óssea 4/análise , Células Epidérmicas/fisiologia , Queratinócitos/fisiologia , Queratinas/análise , Camundongos
20.
Arch Dermatol Res ; 311(1): 37-43, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30460510

RESUMO

The cellular origin of Merkel cell carcinoma (MCC) is controversial. We previously hypothesized that MCC originates from hair follicle stem cells or Merkel cell (MC) progenitors residing within the hair follicle bulge. Examination of three cases of combined MCC led to the unexpected discovery that numerous keratin 20 (CK20)-positive MCs within the squamous cell carcinoma (SCC) component of combined MCC appeared morphologically normal with dendritic and oval shapes. Moreover, one extremely rare case of combined SCC and MCC showed both intra-epidermal and dermal MCCs. These three cases represent the first documentation of MC hyperplasia in MCC, besides various benign follicular neoplasms associated with MC hyperplasia. Therefore, to elucidate the proliferating potential of MCs and their histogenetic relationship with MCCs, we further investigated these cases based on pathological observations. We identified numerous cells co-expressing CK20 and the proliferation marker Ki-67, identical to the morphological and immunohistochemical features of normal MCs. This finding indicated that MCs can no longer be considered as pure post-mitotic cells. Instead, they have proliferative potential under specific conditions in the diseased or wounded skin, or adjacent to various skin tumors, including MCC. Intimate co-existence of two malignant cell components composed of intradermal and intra-epidermal MCCs, with the proliferation of normal-appearing MCs in the same lesion, lends support to the hypothesis that MCs and MCC cells are derived from MC progenitors residing within the hair follicle bulge. Specifically, MCCs are derived from transformed MC progenitors with potential for dual-directional differentiation towards neuroendocrine and epithelial lineages.


Assuntos
Carcinoma de Célula de Merkel/patologia , Proliferação de Células , Células de Merkel/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Imunofluorescência , Humanos , Queratina-20/imunologia , Antígeno Ki-67 , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA